由胰腺管网络的具有挑战性的分割任务激发,本文解决了两个通常遇到生物医学成像问题的问题:分割的拓扑一致性,以及昂贵或困难的注释。我们的贡献如下:a)我们提出了一个拓扑评分,该评分衡量了预测和地面真理分割之间的拓扑和几何一致性,应用于模型选择和验证。 b)我们在时间序列图像数据上为这一困难的嘈杂任务提供了完整的深度学习方法。在我们的方法中,我们首先使用半监管的U-NET体系结构,适用于通用分割任务,该任务共同训练自动编码器和分割网络。然后,随着时间的流逝,我们使用循环的跟踪来进一步改善预测的拓扑。这种半监督的方法使我们能够利用未经通知的数据来学习特征表示,尽管我们的带注释的培训数据的变化非常有限,但该特征表示具有较高可变性的数据。我们的贡献在具有挑战性的分割任务上得到了验证,从嘈杂的实时成像共聚焦显微镜中定位胎儿胰腺中的管状结构。我们表明,我们的半监督模型不仅优于完全监督和预训练的模型,而且还优于在训练过程中考虑拓扑一致性的方法。此外,与经过平均循环得分为0.762的CLDICE的U-NET相比,我们的方法的平均环路得分为0.808。
translated by 谷歌翻译
机器学习显着增强了机器人的能力,使他们能够在人类环境中执行广泛的任务并适应我们不确定的现实世界。机器学习各个领域的最新作品强调了公平性的重要性,以确保这些算法不会再现人类的偏见并导致歧视性结果。随着机器人学习系统在我们的日常生活中越来越多地执行越来越多的任务,了解这种偏见的影响至关重要,以防止对某些人群的意外行为。在这项工作中,我们从跨学科的角度进行了关于机器人学习公平性的首次调查,该研究跨越了技术,道德和法律挑战。我们提出了偏见来源的分类法和由此产生的歧视类型。使用来自不同机器人学习域的示例,我们研究了不公平结果和减轻策略的场景。我们通过涵盖不同的公平定义,道德和法律考虑以及公平机器人学习的方法来介绍该领域的早期进步。通过这项工作,我们旨在为公平机器人学习中的开创性发展铺平道路。
translated by 谷歌翻译